holds, and this forces $n < \dim N\left(\mathbf{A}^{n+1}\right)$, which is impossible. A similar argument proves equality exists somewhere in the range chain.

Property 2. Once equality is attained, it is maintained throughout the rest of both chains in (5.10.2). In other words,

$$N\left(\mathbf{A}^{0}\right) \subset N\left(\mathbf{A}\right) \subset \cdots \subset N\left(\mathbf{A}^{k}\right) = N\left(\mathbf{A}^{k+1}\right) = N\left(\mathbf{A}^{k+2}\right) = \cdots$$

 $R\left(\mathbf{A}^{0}\right) \supset R\left(\mathbf{A}\right) \supset \cdots \supset R\left(\mathbf{A}^{k}\right) = R\left(\mathbf{A}^{k+1}\right) = R\left(\mathbf{A}^{k+2}\right) = \cdots$

$$(5.10.3)$$

Proof. If $k \geq 0$ is the smallest integer such that $R(\mathbf{A}^k) = R(\mathbf{A}^{k+1})$, then $R(\mathbf{A}^{i+k}) = R(\mathbf{A}^i \mathbf{A}^k) = \mathbf{A}^i R(\mathbf{A}^k) = \mathbf{A}^i R(\mathbf{A}^{k+1}) = R(\mathbf{A}^{i+k+1})$. The rank plus nullity theorem (p. 199) insures that the nullspaces stop growing at the same place the ranges stop shrinking.

Property 3. Let k be the value at which the ranges stop shrinking and the nullspaces stop growing in (5.10.3). For a singular $\mathbf{A}_{n \times n}$ and an integer p > 0,

$$R\left(\mathbf{A}^{p}\right)\cap N\left(\mathbf{A}^{p}\right)=\mathbf{0}\Longleftrightarrow R\left(\mathbf{A}^{p}\right)\oplus N\left(\mathbf{A}^{p}\right)=\Re^{n}\Longleftrightarrow p\geq k.$$

Proof. If $R(\mathbf{A}^p) \cap N(\mathbf{A}^p) = \mathbf{0}$, use (4.4.19), (4.4.15), and (4.4.6) to write

$$\dim \left[R\left(\mathbf{A}^{p}\right) + N\left(\mathbf{A}^{p}\right)\right] = \dim R\left(\mathbf{A}^{p}\right) + \dim N\left(\mathbf{A}^{p}\right) - \dim R\left(\mathbf{A}^{p}\right) \cap N\left(\mathbf{A}^{p}\right)$$

 $= \dim R\left(\mathbf{A}^{p}\right) + \dim N\left(\mathbf{A}^{p}\right) = n \implies R\left(\mathbf{A}^{p}\right) + N\left(\mathbf{A}^{p}\right) = \Re^{n}.$

Consequently, $R(\mathbf{A}^p) \cap N(\mathbf{A}^p) = \mathbf{0}$ if and only if $R(\mathbf{A}^p) \oplus N(\mathbf{A}^p) = \Re^n$. Now prove $R(\mathbf{A}^p) \cap N(\mathbf{A}^p) = \mathbf{0} \iff p \geq k$. Suppose $p \geq k$. If $\mathbf{x} \in R(\mathbf{A}^p) \cap N(\mathbf{A}^p)$, then $\mathbf{A}^p\mathbf{y} = \mathbf{x}$ for some $\mathbf{y} \in \Re^n$, and $\mathbf{A}^p\mathbf{x} = \mathbf{0}$, so $\mathbf{A}^{2p}\mathbf{y} = \mathbf{A}^p\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{y} \in N(\mathbf{A}^{2p}) = N(\mathbf{A}^p) \Rightarrow \mathbf{x} = \mathbf{0} \Rightarrow R(\mathbf{A}^p) \cap N(\mathbf{A}^p) = \mathbf{0}$. Conversely, if $R(\mathbf{A}^p) \cap N(\mathbf{A}^p) = \mathbf{0}$, then $R(\mathbf{A}^p) \oplus N(\mathbf{A}^p) = \Re^n$, so $R(\mathbf{A}^p) = \mathbf{A}^p(\Re^n) = \mathbf{A}^p(R(\mathbf{A}^p)) = R(\mathbf{A}^{2p}) \Rightarrow p \geq k$, for otherwise $rank(\mathbf{A}^{p+1}) < rank(\mathbf{A}^p)$ (by Property 2), which would mean that $rank(\mathbf{A}^{2p}) < rank(\mathbf{A}^p)$.

Below is a summary of our observations concerning the index of a matrix.

Index

The index of a square matrix \mathbf{A} is the smallest nonnegative integer k such that any one of the three following statements is true.

- $rank(\mathbf{A}^k) = rank(\mathbf{A}^{k+1}).$
- $R(\mathbf{A}^k) = R(\mathbf{A}^{k+1})$ —i.e., the point where $R(\mathbf{A}^k)$ stops shrinking.
- $N(\mathbf{A}^k) = N(\mathbf{A}^{k+1})$ —i.e., the point where $N(\mathbf{A}^k)$ stops growing.

For nonsingular matrices, $index(\mathbf{A}) = 0$. For singular matrices, $index(\mathbf{A})$ is the smallest positive integer k such that either of the following two statements is true.

- $R\left(\mathbf{A}^{k}\right) \cap N\left(\mathbf{A}^{k}\right) = \mathbf{0}.$ (5.10.4)
- $\Re^n = R(\mathbf{A}^k) \oplus N(\mathbf{A}^k).$