holds, and this forces $n<\operatorname{dim} N\left(\mathbf{A}^{n+1}\right)$, which is impossible. A similar argument proves equality exists somewhere in the range chain.
Property 2. Once equality is attained, it is maintained throughout the rest of both chains in (5.10.2). In other words,

$$
\begin{align*}
& N\left(\mathbf{A}^{0}\right) \subset N(\mathbf{A}) \subset \cdots \subset N\left(\mathbf{A}^{k}\right)=N\left(\mathbf{A}^{k+1}\right)=N\left(\mathbf{A}^{k+2}\right)=\cdots \\
& R\left(\mathbf{A}^{0}\right) \supset R(\mathbf{A}) \supset \cdots \supset R\left(\mathbf{A}^{k}\right)=R\left(\mathbf{A}^{k+1}\right)=R\left(\mathbf{A}^{k+2}\right)=\cdots . \tag{5.10.3}
\end{align*}
$$

Proof. If $k \geq 0$ is the smallest integer such that $R\left(\mathbf{A}^{k}\right)=R\left(\mathbf{A}^{k+1}\right)$, then $R\left(\mathbf{A}^{i+k}\right)=R\left(\mathbf{A}^{i} \mathbf{A}^{k}\right)=\mathbf{A}^{i} R\left(\mathbf{A}^{k}\right)=\mathbf{A}^{i} R\left(\mathbf{A}^{k+1}\right)=R\left(\mathbf{A}^{i+k+1}\right)$. The rank plus nullity theorem (p. 199) insures that the nullspaces stop growing at the same place the ranges stop shrinking.
Property 3. Let k be the value at which the ranges stop shrinking and the nullspaces stop growing in (5.10.3). For a singular $\mathbf{A}_{n \times n}$ and an integer $p>0$,

$$
R\left(\mathbf{A}^{p}\right) \cap N\left(\mathbf{A}^{p}\right)=\mathbf{0} \Longleftrightarrow R\left(\mathbf{A}^{p}\right) \oplus N\left(\mathbf{A}^{p}\right)=\Re^{n} \Longleftrightarrow p \geq k .
$$

Proof. If $R\left(\mathbf{A}^{p}\right) \cap N\left(\mathbf{A}^{p}\right)=\mathbf{0}$, use (4.4.19), (4.4.15), and (4.4.6) to write $\operatorname{dim}\left[R\left(\mathbf{A}^{p}\right)+N\left(\mathbf{A}^{p}\right)\right]=\operatorname{dim} R\left(\mathbf{A}^{p}\right)+\operatorname{dim} N\left(\mathbf{A}^{p}\right)-\operatorname{dim} R\left(\mathbf{A}^{p}\right) \cap N\left(\mathbf{A}^{p}\right)$

$$
=\operatorname{dim} R\left(\mathbf{A}^{p}\right)+\operatorname{dim} N\left(\mathbf{A}^{p}\right)=n \quad \Longrightarrow \quad R\left(\mathbf{A}^{p}\right)+N\left(\mathbf{A}^{p}\right)=\Re^{n} .
$$

Consequently, $R\left(\mathbf{A}^{p}\right) \cap N\left(\mathbf{A}^{p}\right)=\mathbf{0}$ if and only if $R\left(\mathbf{A}^{p}\right) \oplus N\left(\mathbf{A}^{p}\right)=\Re \Re^{n}$. Now prove $R\left(\mathbf{A}^{p}\right) \cap N\left(\mathbf{A}^{p}\right)=\mathbf{0} \Longleftrightarrow p \geq k$. Suppose $p \geq k$. If $\mathbf{x} \in R\left(\mathbf{A}^{p}\right) \cap N\left(\mathbf{A}^{p}\right)$, then $\mathbf{A}^{p} \mathbf{y}=\mathbf{x}$ for some $\mathbf{y} \in \Re^{n}$, and $\mathbf{A}^{p} \mathbf{x}=\mathbf{0}$, so $\mathbf{A}^{2 p} \mathbf{y}=\mathbf{A}^{p} \mathbf{x}=\mathbf{0} \Rightarrow$ $\mathbf{y} \in N\left(\mathbf{A}^{2 p}\right)=N\left(\mathbf{A}^{p}\right) \Rightarrow \mathbf{x}=\mathbf{0} \Rightarrow R\left(\mathbf{A}^{p}\right) \cap N\left(\mathbf{A}^{p}\right)=\mathbf{0}$. Conversely, if $R\left(\mathbf{A}^{p}\right) \cap N\left(\mathbf{A}^{p}\right)=\mathbf{0}$, then $R\left(\mathbf{A}^{p}\right) \oplus N\left(\mathbf{A}^{p}\right)=\Re^{n}$, so $R\left(\mathbf{A}^{p}\right)=\mathbf{A}^{p}\left(\Re^{n}\right)=$ $\mathbf{A}^{p}\left(R\left(\mathbf{A}^{p}\right)\right)=R\left(\mathbf{A}^{2 p}\right) \Rightarrow p \geq k$, for otherwise $\operatorname{rank}\left(\mathbf{A}^{p+1}\right)<\operatorname{rank}\left(\mathbf{A}^{p}\right)$ (by Property 2), which would mean that $\operatorname{rank}\left(\mathbf{A}^{2 p}\right)<\operatorname{rank}\left(\mathbf{A}^{p}\right)$.

Below is a summary of our observations concerning the index of a matrix.

Index

The index of a square matrix \mathbf{A} is the smallest nonnegative integer k such that any one of the three following statements is true.

- $\operatorname{rank}\left(\mathbf{A}^{k}\right)=\operatorname{rank}\left(\mathbf{A}^{k+1}\right)$.
- $\quad R\left(\mathbf{A}^{k}\right)=R\left(\mathbf{A}^{k+1}\right)$-i.e., the point where $R\left(\mathbf{A}^{k}\right)$ stops shrinking.
- $N\left(\mathbf{A}^{k}\right)=N\left(\mathbf{A}^{k+1}\right)$-i.e., the point where $N\left(\mathbf{A}^{k}\right)$ stops growing.

For nonsingular matrices, index $(\mathbf{A})=0$. For singular matrices, index (\mathbf{A}) is the smallest positive integer k such that either of the following two statements is true.

- $\quad R\left(\mathbf{A}^{k}\right) \cap N\left(\mathbf{A}^{k}\right)=\mathbf{0}$.
- $\Re^{n}=R\left(\mathbf{A}^{k}\right) \oplus N\left(\mathbf{A}^{k}\right)$.

